If it's not what You are looking for type in the equation solver your own equation and let us solve it.
d^2-36d+320=0
a = 1; b = -36; c = +320;
Δ = b2-4ac
Δ = -362-4·1·320
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-4}{2*1}=\frac{32}{2} =16 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+4}{2*1}=\frac{40}{2} =20 $
| 16.6d-14.46=18.8d-1.7 | | 6(w-4)-9=-6(-3w+6)-6w | | |2x-2|=13 | | -20+20f=4f+20+18f | | h=(41/4+567/8) | | X(6x-19)=-15 | | 14j+20=12j-20 | | 2r+14=3r | | 7x+5x+6=18 | | (5x^2+4)(x+1)=2 | | (X+5)(x)=234 | | 10s+12.87=8.9s | | -b+19=12b-20 | | h+41/4=567/8 | | 7q+18=q+14+8q | | 0.05(10,000)+0.08x=0.077(10,000+x | | -5-g=-2g | | -2d+9=-d | | 2q-2=10+8q | | 5+10r=8r-8-5 | | 9k+7=10k | | 0.6x-0.1=0.4+0.09 | | h=41/4-567/8 | | -10-5u=-10u | | 6-8j=-10j | | -6c+2=-8c+10 | | 65=15^x | | x^2+5+14=0 | | 5t-7=-5t-7 | | 0.4x/7=-1.2 | | -8-8j=-6j | | -8x^2+2=0 |